1. 为什么要调整学习率?
梯度更新公式:
w
i
+
1
=
w
i
−
L
R
∗
g
(
w
i
)
w_{i+1} = w_i - LR * g(w_i)
wi+1=wi−LR∗g(wi)
随着时间推移,调整学习率与打高尔夫球时击球的力度类似。在一开始,我们希望用较大的击球力度将球击打到离洞口比较近的范围内,然后减小击球力度,使球逐渐靠近洞口,最后将球打进。如果击球力度不减,则球会在离洞口一定范围内震荡,这与loss曲线类似。下图对比了在类似超参数设置条件下的几种不同优化算法。
图自:LINK。
2. PyTorch 学习率调整策略
2.1 手动调节学习率
PyTorch支持在迭代过程中修改学习率,最简单的方法是手动修改学习率。优化器 optimizer 通过 param_group
提供对不同层使用不同的优化方法,其中每组参数保存了各自的学习率、动量等,如果只设置了一种优化方法,修改其第 0 组的 lr
即可,例如设置学习率加倍:
optimizer.param_groups[0]['lr'] *=2
在使用工具调整学习率的过程中,也可检测学习率的变化:
print(optimizer.state_dict()['param_groups'][0]['lr'])
2.2 库函数调节学习率
class _LRScheduler 基类,官方文档:LINK
主要属性:
optimizer
:关联的优化器,用于调整学习率;last_epoch
:记录 epoch 数,学习率的调整以epoch为周期;base_lrs
:记录初始学习率。
主要方法:
step()
:更新下一个epoch的学习率;get_lr()
:虚函数,计算下一个epoch的学习率。
2.3 torch.optim.lr_scheduler.StepLR
torch.optim.lr_scheduler.StepLR(optimizer,
step_size,
gamma=0.1,
last_epoch=-1,
verbose=False)
功能:等间隔调整学习率,调整方式:lr = lr * gamma
。
主要参数:
step_size
:调整间隔数;gamma
:调整系数。
2.4 torch.optim.lr_scheduler.MultiStepLR
torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones,
gamma=0.1,
last_epoch=-1,
verbose=False)
功能:按给定间隔调整学习率,调整方式:lr = lr * gamma
。
主要参数:
milestones
:设定需要调整的时刻数,以列表形式传入;gamma
:调整系数。
2.5 torch.optim.lr_scheduler.ExponentialLR
torch.optim.lr_scheduler.ExponentialLR(optimizer,
gamma,
last_epoch=-1,
verbose=False)
功能:按指数衰减调整学习率,调整方式:lr = lr * gamma ** epoch
主要参数:
gamma
:指数的底,通常设置为接近于1的数,比如0.95;
2.6 torch.optim.lr_scheduler.CosineAnnealingLR
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max,
eta_min=0,
last_epoch=-1,
verbose=False)
功能:余弦周期调整学习率。调整方式:
η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ( T c u r T m a x π ) ) \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right) ηt=ηmin+21(ηmax−ηmin)(1+cos(TmaxTcurπ))
主要参数:
T_max
:下降周期;eta_min
:学习率下限。
2.7 torch.optim.lr_scheduler.ReduceLROnPlateau
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
factor=0.1,
patience=10,
threshold=0.0001,
threshold_mode='rel',
cooldown=0,
min_lr=0,
eps=1e-08,
verbose=False)
功能:监控指标,当指标不再变化则调整。
主要参数:
mode
:min/max 两种模式;factor
:调整系数;patience
:“耐心”,接受几次不变化;cooldown
:“冷却时间”,停止监控一段时间;verbose
:是否打印日志;min_lr
:学习率下限;eps
:学习率衰减最小值。
2.8 torch.optim.lr_scheduler.LambdaLR
torch.optim.lr_scheduler.LambdaLR(optimizer,
lr_lambda,
last_epoch=-1,
verbose=False)
功能:自定义调整策略,针对不同的参数组设置不同的调整策略。
主要参数:
lr_lambda
:function or list。
实例:
import torch
import matplotlib.pyplot as plt
torch.manual_seed(1)
LR = 0.1
iteration = 10
max_epoch = 200
lr_init = 0.1
weights_1 = torch.randn((6, 3, 5, 5))
weights_2 = torch.ones((5, 5))
optimizer = torch.optim.SGD([
{'params': [weights_1]},
{'params': [weights_2]}], lr=lr_init)
lambda1 = lambda epoch: 0.1 ** (epoch // 20)
lambda2 = lambda epoch: 0.95 ** epoch
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
lr_list, epoch_list = list(), list()
for epoch in range(max_epoch):
for i in range(iteration):
# train(...)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
lr_list.append(scheduler.get_lr())
epoch_list.append(epoch)
print('epoch:{:5d}, lr:{}'.format(epoch, scheduler.get_lr()))
plt.plot(epoch_list, [i[0] for i in lr_list], label="lambda 1")
plt.plot(epoch_list, [i[1] for i in lr_list], label="lambda 2")
plt.xlabel("Epoch")
plt.ylabel("Learning Rate")
plt.title("LambdaLR")
plt.legend()
plt.show()
3. 总结
- 有序调整: Step、 MultiStep、 Exponential 和 CosineAnnealing;
- 自适应调整: ReduceLROnPleateau;
- 自定义调整: Lambda。
学习率初始化:
- 设置较小数: 0.01 、 0.001 、 0.0001
- 搜索最大学习率: 《Cyclical Learning Rates for Training NeuralNetworks》,其核心思想是学习率从较小值变化到较大值的过程中,观察某一指标(比如准确率)的变化情况,将该指标出现下降趋势时的学习率作为初始学习率。